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Abstract This work presents an application of Gegenbauer
polynomials in vibrational calculations. We illustrated that
by example calculations of vibrational structure of the Ca+–
H2 exciplex, in the state correlated with 3D calcium ion state.
For this case Gegenbauer polynomials are used for formation
of a basis set for a bending mode. We showed that this basis
set leads to a faster convergence of results than a basis set
formed from Legendre polynomials. Additionally we com-
pared vibrational structure obtained in this manner with re-
sults of discrete variable representation-distributed Gaussian
basis (DVR–DGB) method.

Keywords Vibrational structure · Gegenbauer polynomials ·
Exciplex

1 Introduction

The calcium ion has an interesting energy level scheme. The
lowest excited states D3/2,5/2 of the singly charged ion with
alkali-like electronic structure are metastable states. The radi-
ative lifetimes of the D3/2,5/2 states range from 50–300 ms for
Sr+, Yb+ and Hg+, nearly 1 s for Ca+, up to 20–40 s for Ba+
[2–4]. Such long lifetimes suggest that these ions are very
attractive candidates for optical (D–S) transition and long
infrared (D3/2–D5/2) transition frequency standards. How-
ever, some results [5–8] have shown that the quenching rates
of these states (even in ion trap conditions) caused by inelastic
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collisions with rare gas (RG) atoms are high. With small gas
molecules quenching is even two orders of magnitude more
efficient. Therefore, the knowledge of quenching processes
is essential for establishing frequency standards.

For collisions of small molecules with ions, a high quench-
ing rate means that the potential energy surface (PES) for the
excited (D) state of the complex intersects with the PES of
the ground (S) state, leading to an radiationless excitation
energy transfer from the ion to the molecule during the colli-
sion. There is also an other possibility. Due to the successive
collisions of such complexes with other molecules, or the
interaction with an electromagnetic field, an exciplex can be
formed. Experimental [9] and theoretical [10] investigations
of the Ca+–N2 system has proven that it has a linear geometry,
both in the ground and excited states, and it can be stabilized
in the ground state.

The calculations of the electronic structure are described
elsewhere [1]. We summarize only the most important results.
Potential energy surfaces for the ground and a few excited
states were obtained using the multireference configuration
interaction (MRCI) method. The calculated PES exhibits
strong anharmonicity and anisotropy. The calculations have
shown also that contrary to the Ca+–N2 case the T-shaped
configuration of the nuclei (C2v geometry) is energetically the
most favorable one for both ground and excited states. The
ground state PES has a very shallow minimum (24.2 cm−1)
located at R = 7.02 au and r = 1.40 au, where R, r, θ are
the standard Jacobi coordinates (Fig. 1) of the system. Our
calculations have shown that for this PES only two bound
vibrational states are possible. It is evident that such a mole-
cule cannot exist in normal conditions.

However, the electronic energy of the (3d) 2D2B2 state
has a global minimum of 5510 cm−1, located at R = 3.72,
r = 1.54 au and θ = π/2 (see Figure 3a). Intuition sug-
gests that in this case the existence of many bound states
is possible. Therefore the main goal of the further part of
this work is the theoretical calculation of the vibrational
structure of the exciplex Ca+–H2 in the state correlating
with the (3d) 2D Ca+ level. There is not yet experimen-
tal evidence that the exciplex Ca+– H2 exists. Therefore,
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Fig. 1 Jacobi coordinates for Ca+–H2 complex

calculations were limited to the vibrational spectrum while
the rotational structure was neglected (J=0).

It seems that such a structure could be verified by coherent
anti-stokes Raman scattering (CARS), in a similar way as it
was done for the Na(3p2P)H2 complex [11], or by analyzing
the discrete infrared absorption spectra. The existence of a
stabilized Na(3p2P)H2 exciplex was proven experimentally.
Stabilization was possible by two successive collisions of the
Na atom with two H2 molecules. The same way should lead
to formation of a Ca+–H2 exciplex. The other possibility is a
radiative collision, in which the Ca+ ion in the ground state
collides with the H2 molecule in the presence of a laser beam
with proper frequency ω.

The vibrational energetic structure of triatomic molecules
can be calculated by the commonly accepted DVR–DGB
method [12–15], but the method based on coupled normal
modes approach (secular determinant method) is still attrac-
tive due to the simple physical picture of the normal oscilla-
tions. For atom–diatom complexes with a strong anisotropy
of the PES, three types of basis functions are necessary to
describe the system properly, two for stretching modes and
one for the bending mode. Usually Lagrange polynomials are
used for the construction of the angular basis. However, this
basis is related to the free rotations of the H2 bound in the
complex. Application of such basis functions in the case of
a strongly anisotropic potential as in the case of the Ca+–H2
complex (see Figs. 2 and 3) results in slow convergence of
the calculations.

The strong anisotropy does not allow for free rotation
of the H2 molecule. Thus, it is reasonable to use an angular
basis which better describes the physical nature of restricted
rotations. In our opinion, a suitable basis can be formed from
Gegenbauer polynomials, because the Gegenbauer polyno-
mials form exact analytic solutions for the angular motion on
a model potential, which is similar to the computed potential
as shown in Fig. 2 (see also Appendix A, Eq. (14)). This
potential restricts the rotation of the H2 molecule to the range
from 0◦ to 180◦. This potential can have a similar role in
case of bending motions as the harmonic oscillator potential
for vibrational motion. Such an angular basis formed from
Gegenbauer polynomials can be applied only to complexes
for which the bending potential has a minimum near θ =
90◦ and has repulsive branches at angles of θ = 0◦ and
θ = 180◦. The quality of the angular basis formed from Ge-
genbauer polynomials is discussed further in Appendix B,
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Fig. 2 Angular dependence of the potential energy curve for the first
excited state correlated to the (3d) 2D Ca+ term for equilibrium values
of r, R

where results obtained in calculations based on Gegenbauer
and Legendre basis sets are compared.

2 Details of vibrational calculations

The calculations of the pure vibrational spectrum (J = 0)
for the Ca+–H2 exciplex in the Born–Oppenheimer approxi-
mation are reduced to the solution of an eigenvalue problem,
which in the body fixed frame [16] and Jacobi coordinates
has the form[

K̂V + V (r, R, θ)
]
ψ(r, R, θ) = Eψ(r, R, θ). (1)

The operator KV represents the kinetic energy of the three
normal vibrations: the Ca+–H2 and H–H stretching modes
as well the bending mode

K̂V = − h̄2

2µR2

∂

∂R

(
R2 ∂

∂R

)
− h̄2

2µmr2

∂

∂r

(
r2 ∂

∂r

)

− h̄2

2I

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
, (2)

where µ denotes the reduced mass of the Ca+–H2 system,
and µm stands for the reduced mass of H2. The momentum
of inertia I is defined as
1

I
= 1

µR2 + 1

µmr2 . (3)

V (r, R, θ) is the ab initio potential energy surface in Jacobi
coordinates. Figure 3 shows the PES for the first excited state
correlating to the (3d) 2D Ca+ term close to its minimum.

The eigenfunctions�ν(r, R, θ)of the Eq. (1) are expanded
in a three dimensional orthogonal basis

�ν(r, R, θ)

=
n∑

i=1

m∑
j=1

l∑
k=1

c(ν)i jk
φi (r)

r

χ j (R)

R
ξk(cos θ). (4)
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Fig. 3 Potential energy surfaces for the first excited state correlating to the (3d) 2D Ca+ term for different angels. a θ = π
2 . b θ = 5π

14 . c θ = 3π
14 .

d θ = π
14 , as a function of r and R
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Fig. 4 Potential curve VRe (r) for state (1)2B2. νr denotes the quantum
number for oscillation H–H

The basis functions φi (r) and χ j (R) are eigenfunctions of
equations for the stretching modes of

H–H

[
− h̄2

2µm

d2

dr2 + VRe(r)

]
φi (r)

= E (r)i φi (r), i = 1, . . . , n (5)

and

Ca+–H2

[
− h̄2

2µ

d2

d R2 + Vre(R)

]
χ j (R)

= E (R)j χ j (R), j = 1, . . . ,m, (6)

respectively.
The basis functions φi (r) and χ j (R) were found numer-

ically. Equations (5) and (6) were solved using the Nume-
rov–Cooley method. The related one dimensional potential
energies VRe(r) = V (r, Re,

π
2 ) and Vre(R) = V (re, R, π2 ),

are displayed in Figs. 4 and 5. Appropriate eigenvalues and
eigenfunctions of Eqs. (5) and (6) are also presented in these
figures.

The quantities Re and re are the equilibrium values of R
and r , respectively. One dimensional vibrational calculations
yield 3 eigenstates for the H–H stretching mode with eigen-
values (1446, 3806, 5687 cm−1),1 and 13 states in case of

1 Here and in other points of this article vibrational energies are
referred to the minimum of the (3d)2 B2 potential energy surface

2 4 5 6 7 8 10
0

0.25

0.5

0.75

E
ne

rg
y 

[e
V

]

93

R [au]

vR = 10
vR = 9

vR = 8

vR = 7

vR = 6

vR = 5

vR = 4

vR = 3

vR = 2

vR = 1

vR = 0

Fig. 5 Potential curve Vre (R) for state (1)2B2. νR denote the quantum
number for oscillation Ca+–H2

the Ca+—H2 stretching mode (453, 1323, 2118, 2837, 3486,
4056, 4555, 4983, 5332, 5580, 5756, 5906, 6002 cm−1).

The basis functions ξk(cos θ)used to describe the bending
mode correspond to analytic eigenfunctions of the non free
rigid rotator, whose motion is restricted by forces related to
the model potential Vmod(θ) (see Appendix A). As was men-
tioned earlier, such an approach is used because the angular
dependence of the PES is strongly anisotropic. Thus, the H2
bond cannot rotate freely in the complex. Therefore, the angu-
lar basis formed from Gegenbauer polynomials reflects the
physics of the problem. Normalized ξk(cos θ) functions have
the form

ξk(θ) = 22σ |�(2σ + 1/2)|
[

k!(2σ + 1/2 + k)

π�(k + 4σ + 1)

]1/2

×(1 − z2)σC2σ+1/2
k (cos θ). (7)

These functions correspond to the eigenvalues

λk,σ = h̄2

2Ie

[
k2 + (4σ + 1) k + 2σ (2σ + 1)

] + Vu . (8)

Here C
2σ+ 1

2
k (cos θ) denotes the Gegenbauer polynomial of

the k-order, σ =
√

IeV0
2h̄2 and � is the �-function. For details

see Appendix A. Constant values Vu and V0 are chosen in
such a way that one obtains the best fit of (14) to the ab initio
values of V (re, Re, θ).
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One can rewrite Eq. (1) in the form of a secular equation.
First one has to substitute function (4) into Eq. (1), then add
and subtract the one dimensional potentials VRe(r), Vre(R)
and Vmod(z = cos θ) from the resultant equation. Then, after
grouping appropriate terms, one can use the properties of the
eigenequations for the stretching [Eqs. 5 and 6] and bending
[Eq. 13] modes. Ultimately, multiplication of the result by
φ∗

i ′(r)χ
∗
j ′(R)ξ

∗
k′(z) and integration over all coordinates leads

to the following secular equations

n∑
i=1

m∑
j=1

l∑
k=1

[
�Vi ′ j ′k′,i jk −

(
E − E (r)i − E (R)j

)

×δi ′iδ j ′ jδk′k + Ie

(〈
1

µmr2

〉

i ′i
δ j ′ j

+
〈

1

µR2

〉

j ′ j
δi ′i

)
λkδk′k

]
c(ν)i jk = 0, (9)

where the matrix elements �Vi ′ j ′k′,i jk are defined by

�Vi ′ j ′k′,i jk =
∫

drd Rdz φ∗
i ′(r)χ

∗
j ′(R)ξ

∗
k′(z)

×V (r, R, z)φi (r)χ j (R)ξk(z)

−
∫

dr φ∗
i ′(r)VR0(r)φi (r)δ j ′ jδk′k

−
∫

d R χ∗
j ′(R)Vr0(R)χ j (R)δi ′iδk′k

−Ie

(〈
1

µmr2

〉

i ′i
δ j ′ j +

〈
1

µR2

〉

j ′ j
δi ′i

)

×
∫

dz ξ∗
k′(z)Vmod(z)ξk(z). (10)

In order to find the vibrational structure of the Ca+–H2
exciplex numerically, the PES should be known in each point
of r, R and θ . To reach that goal the ab initio data were inter-
polated for each value of θ by a two dimensional cubic spline
of r and R. Next we factorized the θ dependence of V (r, R, θ)
by expanding the potential in a series of Legendre polynomi-
als and truncating it after the sixth term

V (r, R, θ) =
6∑

l=0

Vl(r, R)Pl(cos θ). (11)

This potential can be written in the equivalent form

V (r, R, θ) = a0(r, R)+ a2(r, R) cos2 θ

+a4(r, R) cos4 θ + a6(r, R) cos6 θ. (12)

The absence of odd terms reflects the symmetry of V (r, R, θ)
(see [1] and Fig. 2). Equation (12) may be interpreted as the
Lagrange interpolation of V (r, R, θ). To minimize the error
of the interpolation we choose values of θ at π

14 , 3π
14 , 5π

14 , π2 .
These points are the nodes of the Chebyshev polynomial of
the seventh order. The coefficients ai (r, R) are obtained by
the solution of the linear set of equations formed by insertion
of the calculated potential energy values into Eq. (12). The

angular potential matrix elements are evaluated analytically,
but they could also be obtained numerically. Application of
the Gauss–Chebyshev quadrature gives precise results.

3 Results of vibrational calculations

The secular set of equations (9) was solved numerically. The
stabilized results were obtained for the basis formed from sets
of n = 3, m = 10, l = 12 basis functions. The results of the
vibrational calculations are presented in Table 1. The calcula-
tions showed the existence of ten bound levels in the excited
2 B2 state of the Ca+–H2 complex. These states were denoted
by ν. The indices νr , νR, νθ stand for the vibrational quan-
tum numbers of the H2 and the Ca+–H2 stretching modes and
the bending mode, respectively. The third column of Table 1
presents the probability that a state of the exciplex is the state
with the quantum numbers νr , νR, νθ . In the next column
the energy levels are shown. As we mentioned earlier the
energy values are referring to the global minimum of the (1)
2 B2 potential energy surface. The last column stands for the
difference between energies of successive vibrational energy
levels. The fundamental state is denoted by ν = 0. The first
excited state can be considered as the pure Ca+–H2 bond
vibration. The second one corresponds to the pure bending
mode vibration. The next state is the second excited state of
the stretching mode of the Ca+–H2. The state with ν = 4
is the first one in which combined vibrations of the Ca+–H2
stretching mode and the bending mode appear. The states
with ν = 6 and ν = 9 can also be regarded as almost pure
ones. The remaining states present combinations of different
modes with a stronger coupling between the Ca+–H2 stretch-
ing mode and the bending mode. The only state where the first
excited state of the H2 (νr = 1) introduces a more important
contribution lies very high, close to the dissociation limit.

The mean values of r and R in the fundamental mode
are

〈
r
〉
ν=0 = 1.67 au and

〈
R
〉
ν=0 = 3.76 au, while the equi-

librium values are re = 1.54 au and Re = 3.72 au. The H2
bond length in comparison to the free molecule is increased
by about 0.29 au.

To estimate the accuracy of the results obtained in our
approach we repeated the calculations applying the DVR–
DGB method. We used Tennyson’s et al. [17] DVR3DRJ

Table 1 Vibrational structure of the Ca+–H2 complex in the first excited
state correlating to the (3d) 2D Ca+ term

ν νrνRνθ |c(ν)i jk |2 E (cm−1) �E (cm−1)

0 000 0.98 2495
1 010 0.94 3322 827
2 001 0.88 3638 316
3 020 0.90 4085 447
4 011 0.68 4401 316
5 002 0.70 4636 235
6 030 0.86 4770 134
7 021 0.48 5095 325
8 100 0.49 5142 47
9 040 0.81 5383 241
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Table 2 Comparison of results obtained with the DVR–DGB method
and the secular approach with assumption I = Ie(re, Re) for the Ca+–
H2 complex for the first excited state correlating to the (3d)2D Ca+
term

DVR–DGB method Secular method I = Ie(re, Re)

ν E (cm−1) �E (cm−1) E (cm−1) �E (cm−1)

0 2514 2513
1 3340 826 3340 827
2 3670 330 3647 307
3 4103 433 4103 456
4 4419 316 4406 303
5 4667 248 4693 287
6 4792 125 4788 95
7 5109 317 5095 307
8 5156 47 5267 172
9 5470 314 5401 134

code. In this code the angular basis functions are associated
Legendre polynomials. The radial basis functions are either
the Morse oscillator-like functions [16] or the spherical oscil-
lator functions [18]. Forming a radial basis set, we chose
Morse oscillator-like functions. In DVR3DRJ code available
for us, one uses for these basis functions DVR quadrature
approximation for the integrals of the r−2 matrix, and this
makes its transformation diagonal [17]. So, to compare the
results of our approach with DVR ones on the same footing,
we have replaced I (3) in the Hamiltonian (2) by the con-
stant value I = I (re, Re). The vibrational energies obtained
in this manner from the secular method and the results of the
DVR–DGB method are presented in Table 2. One can see
from this table, that both methods give very similar results.

4 Conclusions

Calculations of the vibrational energy structure for the first
electronic excited state correlating with (3d)2D Ca+ term
were performed. For this purpose the secular determinant
and the DVR–DGB methods were used.

The basis set for the secular method was formed from the
product of functions determined numerically for the Ca+–H2
and the H2 stretching modes and an analytic one for the bend-
ing mode. According to our calculations ten bound vibra-
tional states exist for this exciplex. Some of these states can
be interpreted as pure Ca+–H2 stretching and bending modes.
The remaining states are combinations of modes. Only one
state corresponds to a significant coupling of the excited H2
vibrational mode with other modes. The existence of the
Ca+–H2 exciplex is not experimentally confirmed yet. How-
ever, one can suppose that the stabilization of this complex
is possible by different physical mechanisms. For example,
this exciplex could be stabilized in an experiment in which
a mixture of Ca+ and H2 gases is illuminated by a laser
light adjusted to the energy difference between the ground
state and one of the vibrational states of the exciplex. For the
equilibrium values of the (3d)2D2B2 PES the laser energy
should be in the range 6250–9138 cm−1.

We have shown that Gegenbauer polynomial are much
better basis functions than Legendre polynomials for the
bending motion of systems with a minimum around θ = π

2
and a strong anisotropy. The Gegenbauer polynomials lead
to much faster basis set convergence. Due to our knowledge
this is the first attempt to apply Gegenbauer polynomials in
vibrational calculations.

Acknowledgement This work was supported by the KBN grant No. 5
P03B 038 20.

Appendix A. The bending motion

For describing the bending motion we have used analytic
functions which are eigenfunctions of the equation
[
− h̄2

2Ie

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ 1

sin2 θ

∂2

∂ϕ2

)

+ Vmod(θ)

]
�(θ, ϕ) = λ�(θ, ϕ), (13)

where

Vmod(θ) = Vu + V0

sin2 θ
. (14)

The momentum of inertia Ie is defined as

1

Ie
= 1

µR2
e

+ 1

µmr2
e
. (15)

Equation (13) describes a rigid rotator which motion is
restricted by the potential Vmod(θ). Its eigenfunctions have
the form

�(θ, ϕ) = Y (θ)
1√
2π

e±imϕ, (16)

where m = 0,±1,±2,±3, . . .. Defining

γ = 2Ie(λ− Vu)

h̄2 , κ2 = 2IeV0

h̄2 and z = cos θ, (17)

and inserting (16) into (13) we can rewrite Eq. (13) in the
form
[
∂

∂z
(1 − z2)

∂

∂z
− m2 + κ2

1 − z2 + γ

]
Y (z) = 0. (18)

To get rid of the singularity we postulate the solution as

Y (z) = (
1 − z2)σ K (z). (19)

Therefore, Eq. (18) can be rewritten in the form

(1 − z2)K ′′(z)− 2z(2σ + 1)K ′

+ [
γ − 4σ 2 − 2σ

]
K (z) = 0, (20)

where the condition σ = + 1
2

√
m2 + κ2 leads to a proper

behavior of the Y σ (z)when z tends to ±1. We can find a solu-
tion of this equation by expanding K (z) in a series K (z) =
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Table 3 Comparison of convergence rates for the lowest energies of the bending mode in a basis formed from Legendre Polynomials (ELeg), and
a basis formed from Gegenbauer polynomials (EGeg)

ν = 0 ν = 1 ν = 2
Ed = 520.2016 cm−1 Ed = 1648.0515 cm−1 Ed = 2828.9413 cm−1

N EGeg [cm−1] ELeg [cm−1] EGeg [cm−1] ELeg [cm−1] EGeg [cm−1] ELeg [cm−1]

1 521.4851 2975.9357
521.4851 2975.9357 1650.0601 5879.1468

2 520.2960 920.2566 1650.0601 5879.1468 2833.6101 7740.6373
520.2960 920.2566 1648.9771 2643.8516 2833.6101 7740.6373

3 520.2340 578.5943 1648.9771 2643.8516 2833.6093 4331.2711
520.2340 578.5943 1648.3372 1829.1914 2833.6093 4331.2711

4 520.2101 524.5147 1648.3372 1829.1914 2830.5328 3153.0073
520.2101 524.5147 1648.1440 1665.1440 2830.5328 3153.0073

5 520.2073 520.2864 1648.1440 1665.1440 2829.5347 2864.8431
520.2073 520.2864 1648.1055 1648.5341 2829.5347 2864.8431

Ed denotes the accurate value, N stands for the number of symmetric (antisymmetric) basis functions. We have used parameters (V0 = 0.02,
Vu = −0.02) for the model potential.

∑∞
k=0 ak zk . Substituting K (z) into (20) we can find a recur-

sive relation for the ak coefficients
ak+2

ak
= k(k − 1)+ (4σ + 2)k + 4σ 2 + 2σ − n(n + 1)

(k + 2)(k + 1)
.

(21)
Finally, by cutting K (z) on the nth term one gets a condition
for the eigenvalues.

Equation (20) can be also reduced to the hypergeomet-
ric equation by the substitution t = (1 − z)/2. A simple
calculations yields[

d2

dt2 + 2(1+2σ)t−(1+2σ)

t (t−1)

d

dt
+ 4σ 2+2σ−γ

t (t−1)

]
K (t)=0.

(22)
Following the standard procedure of comparing coefficients
we get the solution

K σ
n (z) = F

(
−n, 1 + 4σ + n, 1 + 2σ ; 1 − z

2

)
, (23)

expressed by the hypergeometric function F . Both methods
lead to the eigenvalues

λn,σ = h̄2

2Ie

[
n2 + (4σ + 1) n + 2σ (2σ + 1)

] + Vu . (24)

The full function Y σn (z) can be written in terms of Gegenbauer

polynomials C2σ+1/2
n (z) = N K σ

n (z) (for definition see [19,
20]). The normalized functions Y σn (z) have the form

Y σn (z) = 22σ |�(2σ + 1/2)|
[

n!(2σ + 1/2 + n)

π�(n + 4σ + 1)

]1/2

×(1 − z2)σC2σ+1/2
n (z). (25)

For the case where quantity σ = 0, the Gegenbauer poly-
nomials C2σ+1/2

n (z) reduce to the associated Legendre poly-
nomials P |m|

n (cos θ). This is obvious, because in this case in
the model potential V0 is 0 and Equation (13) reduces to the
rigid rotor equation.

The eigenfunctions Y σn (z) (25) for m = 0 are denoted
ξσn (θ) and are used for spanning a basis set for the bending
mode (see formula (7)).

Appendix B. Comparison of the basis sets

We solved numerically the eigenvalue problem
[
− h̄2

2Ie

(
1

sin θ

∂

∂θ
sin θ

∂

∂θ

)

+V (re, Re, θ)

]
χ(θ, ϕ) = Eχ(θ, ϕ), (26)

in order to compare convergence rates of calculations per-
formed in basis sets formed from Gegenbauer and Legendre
polynomials, respectively. V (re, Re, θ) stands for the ab ini-
tio potential energy curve of the bending mode (see Fig. 2)
of the Ca+–H2 system.

First of all Eq. (26) was solved numerically using the
finite differences method. The eigenenergies obtained by this
method are regarded as the most precise, and they are treated
as the reference energies for other calculations, and they are
denoted by Ed .

Next, we solved Eq. (26) using the secular method with
two different basis sets.

Once the function χ(θ) was expanded in terms of
Gegenbauer polynomials. We chose parameters V0 = 0.02 au
and Vu = −0.02 au for the potential Vmod(θ). In this calcu-
lations the resultant eigenvalues are denoted by EGeg .

Finally, the secular equations are obtained by expanding
the χ(θ) in the basis formed from Legendre polynomials. In
this case ELeg stands for the eigenvalue.

The Hamiltonian (26) is invariant to the interchange of
H nuclei in the H2 moiety. Therefore, the wavefunctions are
either symmetric or antisymmetric in respect of this inter-
change. Thus, only the proper symmetry basis functions have
influence on a wavefunction. The results concerning low
lying levels are presented in Table 3. We can see from
Table 3 that the convergence rate for the basis formed from
Gegenbauer polynomials is high.

The V (re, Re, θ) potential energy curve is rather shal-
low so for excited states the convergence is worse then for
low lying states, but still it is better for Gegenbauer than for
Legendre polynomials. It seems that the basis formed from



Gegenbauer polynomials in a theoretical study of the vibrational structure of the Ca+–H2 system 329

Gegenbauer polynomials will work even better if the real
potential energy is deeper.

We have also carried out a comparison of these two angu-
lar basis sets in a three dimensional case. For this purpose
vibrational energies were calculated in a basis obtained by
replacing the angular basis functions ξk(cos θ) in expansion
(4) by Legendre polynomials. We observed a similar behavior
of the convergence rates as in the one dimensional example.
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15. Bačić Z, Light JC (1987) J Chem Phys 86:3065
16. Tennyson J, Sutcliffe BT (1985) J Chem Phys 77:4061
17. Tennyson J, Henderson JR, Fulton NG (1995) Comp Phys Com

86:175
18. Tennyson J, Sutcliffe BT (1983) J Mol Spectr 101:71
19. Bateman H, Erdélyi A (1953) Higher transcendental functions. Vol

1. Mc Graw–Hill, New York
20. Bateman H, Erdélyi A (1953) Higher transcendental functions. Vol

2. Mc Graw–Hill, New York


